On signs of Hecke eigenvalues of Siegel eigenforms

نویسندگان

چکیده

In this article, we distinguish Siegel cuspidal eigenforms of degree two on the full symplectic group from signs their Hecke eigenvalues. To establish our theorem, obtain a result towards simultaneous sign changes eigenvalues eigenforms. course proof, also prove that Satake p-parameters different are distinct for set primes p density 1. The main ingredient to latter is theory Galois representations attached

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bounding Hecke-siegel Eigenvalues

We use the action of the Hecke operators T̃j(p 2) (1 ≤ j ≤ n) on the Fourier coefficients of Siegel modular forms to bound the eigenvalues of these Hecke operators. This extends work of Duke-Howe-Li and of Kohnen, who provided bounds on the eigenvalues of the operator T (p).

متن کامل

Fourier Coefficients of Hecke Eigenforms

We provide systematic evaluations, in terms of binary quadratic representations of 4p, for the p-th Fourier coefficients of each member f of an infinite class C of CM eigenforms. As an application, previously conjectured evaluations of three algebro-geometric character sums can now be formulated explicitly without reference to eigenforms. There are several non-CM newforms that appear to share s...

متن کامل

Quantum Variance for Hecke Eigenforms ✩

– We calculate the quantum variance for the modular surface. This variance, introduced by S. Zelditch, describes the fluctuations of a quantum observable. The resulting quadratic form is then compared with the classical variance. The expectation that these two coincide only becomes true after inserting certain subtle arithmetic factors, specifically the central values of corresponding L-functio...

متن کامل

A Note on Eigenvalues of Hecke Operators on Siegel Modular Forms of Degree Two

Let F be a cuspidal Hecke eigenform of even weight k on Sp4(Z) with associated eigenvalues Xm (m e N). Under the assumption that its first Fourier-Jacobi coefficient does not vanish it is proved that the abscissa of convergence of the Dirichlet series J2m>¡ \*-m\m~S *s 'ess tnan or eQual to k ■ Introduction Let F be a cuspidal Hecke eigenform of weight k € 2N on Sp4(Z) with associated eigenvalu...

متن کامل

UPPER BOUND ON THE NUMBER OF SYSTEMS OF HECKE EIGENVALUES FOR SIEGEL MODULAR FORMS (MOD p)

. The constants are effectively computable. Proof. Part (a) follows from the fact that the algebraic group GSp2g has dimension 2g +g+1. Part (b) is obvious. Combined with Theorem 1.1 of [Ghi04], Theorem 1 gives Corollary 3 (Algebraic modular forms). Let B/Q be the quaternion algebra ramified at p and ∞. The number of systems of Hecke eigenvalues coming from algebraic modular forms (mod p) of le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2022

ISSN: ['2041-7942', '0025-5793']

DOI: https://doi.org/10.1112/mtk.12154